&\
\\ & BINGHAMTON
_\\/% UNIVERSITY

&; Seate Universisy of New York

A Predictive Model for Cache-Based
Side Channels in Multicore and
Multithreaded Microprocessors

Leonid Domnitser, Nael Abu-Ghazaleh and Dmitry Ponomarev
Department of Computer Science
SUNY-Binghamton
{lenny, nael, dima}@cs.binghamton.edu

Advanced Computing Architectures

®

/)> EIHG}L#M_TDH

/ UNIVERSITY
<¢\3/‘ Seate University of New York

Multi-cores-->Many-cores

* Moore's law coming to an end
— Power wall; ILP wall; memory wall
— “End of lazy-boy programming era”

« Multi-cores offer a way out
— New Moore's law: 2x number of cores every 1.5 years

 New security vulnerabilities arise due to
resource sharing

— Side-Channel Attacks and Denial of Service Attacks

Advanced Computing Architectures

BINGHAMTON

LNIYERSITY

w/Last level Cache Sharing on Multicores sy
(Intel Xeon)

-

2 quad-core
Intel Xeon €5345

(Clovertown)

-

Core | Core Core | Core Core | Core Core | Core

FSB ESB

10.66 GB/s i t 10.66 GB/s

Chipset (4x64 b controllers)
21.33 GB/s(read) 10.66 GB/s(write)

667 MHz FBDIMMs \

//

oy

’

L

Instruction
Cache

Fetch
Unit [pc

JV

Issue Queue

Decode

v

v
Register
Rename

)

v

Load/Store
Queues

\ 4

Register
File

Advanced Computing Architectures

BINGHAMTON

LNIYERSITY

§;)>
* L1 Cache Sharing in SMT ProcessoQf-i=

\ 4

Execution
Units

A

Re-order Buffers

Arch
< State

JV

LDST
Units

Data <—

\ 4

Cache

Private Resources

Shared Resources

** Advanced Encryption Standard (AES) o

e One of the most popular algorithms in symmetric key
cryptography
= 16-byte input (plaintext)
= 16-byte output (ciphertext)
= 16-byte secret key (for standard 128-bit encryption)

= several rounds of 16 XOR operations and 16 table

lookups
secret key byte Lookup Table

<> <:> ind‘ex

Input byte

78 A)
& 5&;‘;’. \J/’/ - e
\S2 BINGHAMTON
Ll o - T | [

Advanced Computing Architectures

BINGHAMTON

UNIVERSITY

Set-Associlative Caches Su Uy of o ik

3130---12111098---3210

Jd22 ds

N N

Index V Tag Data V Tag Data V Tag Data V Tag Data

22 32

Hit Data

Attack Example

Cache

o0 o W

Main Memory

Attacker’s data

b>(a~c=d)

AES data

=

Advanced Computing Architectures

BINGHAMTON

LNIYERSITY

Seate Livdvrrsiey of New York

Can exploit knowledge of the cache replacement policy to optimize attack

8

Advanced Computing Architectures
)> BINGHAMTON

%2 Cache-Based Side Channel Attacks et

* An attacker and a victim process (e.g. AES) run
together using a shared cache

* Access-Driven Attack:
« Attacker occupies the cache, evicting victim’s data

 When victim accesses cache, attacker’s data is evicted

« By timing its accesses, attacker can detect intervening
accesses by the victim

* Time-Driven Attack
« Attacker fills the cache
« Times victim’s execution for various inputs
« Performs correlation analysis

Advanced Computing Architectures

BINGHAMTON

LNIYERSITY

Simple Attack Code Example “ossass

#define ASSOC 8
#define NSETS 128

#define LINESIZE 32

#define ARRAYSIZE (ASSOC*NSETS*LINESIZE/sizeof{int))

static int the _array[ARRAYSIZE]
int fine grain timer(); //implemented as inline assembler

void time _cache() {
register int i, time, X,
for(i =0;i < ARRAYSIZE; i++) {
time = fine grain_timer(),
x = the_array[i];
time = fine grain_timer() - time;
the array[i] = time;
/
/

BINGHAMTON

UNIVERSITY

Existing Solutions e

* Avoid using pre-computed tables — too slow

 Close the channel:

* Lock critical data in the cache (Lee, ISCA 07)
* Impacts performance

 Randomize the victim selection (Lee, MICRO’08)

« Both are highly complex, impact performance and require
OS/ISA support

 Constrain the channel:

 NoMo: dynamic partitioning of the cache that sets some
ways of the cache to be exclusive to each thread

« Still leaks a small amount of accesses

Advanced Computing Architectures

BINGHAMTON

UNIYERSITY
Seate Livdvrrsiey of New York

Aggregate Exposure of Critical Data

Aggregate Critical Exposure

B AES encrypt
I AES decrypt
B BF encrypt
___ B BF decrypt

Exposure rate

"NoMo-0 NoMo-1 NoMo-2 NoMo 3 NoMo-4

N /)> BINGHAMTON
_\ UNMIVERSITY

4 Contribution and Motivation ‘=teesee

A

* Predictive mathematical model for access leakage
for access based side channel attacks

* Why? Vulnerability is a function of information
leaked through the side-channel
« Estimate how vulnerable current algorithms and caches

to attack
« Estimate how effective imperfect solutions that constrain
rather than close the side-channel are

Advanced Computing Architectures

BINGHAMTON

LNIYERSITY

Model Parameters e =

event of an access

number of memory accesses

event of critical access

event of detected access

number of lines used in a set

number of sets

cache set number

time between repeat accesses by attacker

-[time between repeat accesses by victim
cache associativity

T NN = EDNR |

HSY
H> Y
7\ W e
3

4
W3
\

Q*’i",@ NG N
N . . UNIV S1TY
b4 Leakage Prediction Model = ==ron

* P(DJ|C) is the probability that the cache access is
detected by the attacker given that this access is
critical

* P(D) is the probability that the access Is detected

* P(C) is the probability that the access is critical

* Our model computes P(C|D) as follows:

* P(DIC) = [P(C|D)*P(D)] / P(C)

Q) BINGHAMTON
NN

UNIVERSITY

o Leakage Prediction Model =

 Estimating P(C)

« Average fraction of critical accesses — constant for a
given program.

« Can be estimated through static analysis or profiling
« Estimating P(D)

« Number of detected accesses out of the total number of
accesses

« 100% for the perfect attacker. Less in reality as some
accesses are hidden by cache hits.

« Estimating P(C|D)
 Need to filter out the noise due to non-critical accesses

Estimating P(D)

mrmin(ﬁ,)
P(D,) = —— "
5

Estimating P(C|D)

.lrr_.;-min|: ﬁ N :I e
(X

(m.[-_I-minli ﬁ |]-)
Ce me,
P(Cs|D,) = E

Estimating P(D|C)

U O, =10
Ef 0 .li'r.l--_;-minl:j o -l})
. i Lot herwise
O 5

E,'l.l' () Gy = ()
s=071 1 : atherwise

P(DIC) =

Advanced Computing Architectures

Aggregate Leakage Predicted by Model [RaEEVReN

Seage Lindversigy of New York

0.87 0.87 0.88 0.88

08 .76 0.7 077 077
0.7
0.6
0.5
0.4
0.2
0.1
0.0
L, ‘*-.

PIDIC)

s

Advanced Computing Architectures

Predicted Leakge Per Set, Blowfish 8-way EREEEVEEN

LUNIYERSIT I

set associative cache Stase Universie o New York

FDIC)

Advanced Computing Architectures

Predicted leakage Per Set, AES 8-way set [INGELUEEK

LUNIYERSIT I

associative cache State Universey of New York

1.0
0.8

FDIC)

Advanced Computing Architectures

Predicted leakage Per Set, Blowfish, AES, [EREEEVEEN

UNIVERSITY

Direct Mapped Cache St Uniersiyof New York
1.0 1.0
0.8 0.8
0.E 0.B
Q.7 Q.7
0.6 0.6
0y 0B = 05
& 04 2 04
0.3 0.3
0.2 0.2
Q.1 0.1
Q.0 III.IZI
bt 13411 E1 1 44044 -1 EINRZEBIES

Cache sat

Advanced Computing Architectures

BINGHAMTON

UNIVERSITY

Seage Lindversigy of New York

Model Validation Methodology

We used M-Sim-3.0 cycle accurate simulator (multithreaded and
Multicores derivative of Simplescalar) developed at SUNY
Binghamton

 http://www.cs.binghamton.edu/~msim
Evaluated leakage for AES and Blowfish encryption/decryption
Ran security benchmarks for blocks of randomly generated input

Implemented the attacker as a separate thread and ran it alongside
the crypto processes

Assumed that the attacker is able to synchronize at the block
encryption boundaries (i.e. It fills the cache after each block
encryption and checks the cache after the encryption).

http://www.cs.binghamton.edu/~msim
http://www.cs.binghamton.edu/~msim

Advanced Computing Architectures

BINGHAMTON

LNIYERSITY

Seage Lindversigy of New York
Model Validation: Per Block Leakage in AES
z =
.1 o L1
3 1E)
e
E_ 4 :I.: {44
B 12 3 1mm
E 10 COR]
B 5
f'=. - ; £
' o 1
4 40
ra |
:EF.'.'.:'EE:':.EI.':'EE'E;;. UEEE:-.':'EE‘-."EE'E'F."E&E
&5 & o - = - = & e e e R R -
I aprimara i Expazeairm rales

(a) AES enc., s-way (b) AES dec., 8-way

BiosTiE i Fali

il

el

() Blowfish enc., B-way

nm
OLED

0Ed

Advanced Computing Architectures

BINGHAMTON

LNIYERSITY

. . . Seaze Undvrrsity of New York
Model Validation: Blowfish I
R
D
i
& 100
-
S
g o0
2 4p
el
o -
22982888 ¢ER 8 PEE I EITEEERAEG
[= S R e R = e R == N — I - O~ — = Y e S = N = = I = D = I == R = G = R = |
Espagiing raie Exposuee rake

(1) Blowfish dec., B-way

Advanced Computing Architectures

BINGHAMTON

LNIYERSITY

Seate Livdvrrsiey of New York

Model Validation: Direct-Mapped Cache

180 1E0
{4l id0
1251 120
E 1m 2 I
£ =
2 2
£ Bl < 1]
i L.
H L=
@) LT
r..1 | a
.I - "~ ™ ; [}] - - ™ ™ = 1 I:III ™ ™ - = 1 Fa a] ™
J': - 'q - " -~ 'q - m ' ' -r ™ L= -~ o m [m - Ll m - m r —
= = I =R "R = S "R = R = e R (=T == =R o= R = = (=" =T = = = i
E njcaura rila Expasum rla

(g} Blowfish enc., direct- (h) Blowfish dec., direct-
mapped mapped

Advanced Computing Architectures

Conclusions and Future Work YRS

Seate Livdvrrsiey of New York

We developed a model for information leakage for access based
cache side channel attacks

« An important attack with the emergence of multi-core and multi-
threaded architectures

Model can capture overall accesses in an application or any subset
of them (e.g., specific sets)

The model was validated against a cycle accurate simulator

Future work: model the impact of defenses that reduce the leakage

Future work: translate leakage pattern into a measure of difficulty of
breaking the key

Advanced Computing Architectures

BINGHAMTON

LNIYERSITY

Seate Livdvrrsiey of New York

Thank you!

Questions?

Cnacunbo 6onbLioe

Kakune-HMbyab BOMpOCHI?

30

BINGHAMTON

UNIVERSITY
Seaze Lhndversizy of Mew York

Example of Partial Side Channel Closure:
NoMo Caches

« Key idea: An application sharing cache cannot use all lines in
a set

« NoMo invariant: For an A~way cache, a thread can use at
most NV— Y lines

« Y—NoMo degree

. Essentially, we reserve Y cache ways for each co-executing
application and dynamically share the rest

. If Y=N/2, we have static non-overlapping cache
partitioning

« Implementation is very simple — just need to check the
reservation bits at the time of replacement

Advanced Computing Architectures

¢> BINGHAMTON

NoMo Replacement Logic

!

Select next Victim line
Start 3 : reserved Evict selected
?;;grcdelpngeﬁ for another victim line
oolicy thread?

T Yes

BINGHAMTON

UNIVERSITY

Seage Lindversigy of New York

NoMo example for an 8-way cache

Shared way usage

F:1 H:1 R:2 Q:2 K:1
A:l P:1
G:1 B:1 J:1 N:1 D:1

M:1 L1 T:2 S:2 |11 U:2 0O1 E:1

e Showing 4 lines of an 8-way cache with NoMo-2
e X:N means data X from thread N

Why Does NoMo Work?

Advanced Computing Architectures

BINGHAMTON

UNIVERSITY
Seage Undveraiey of New York

Accesses to cache set S

V1 A v2 v2 A vz (v A
' | '\ /' ['\ 7/ | TIME 7
Attacker's Cache Same tag, Different tag,
Traversal Time (CTT) not exposed captured

Victim’s accesses become visible to attacker only if the
victim has accesses outside of its allocated partition
between two cache fills by the attacker,

In this example: NoMo-1

Advanced Computing Architectures

BINGHAMTON

UNIVERSITY

Seage Lindversigy of New York

Evaluation Methodology

We used M-Sim-3.0 cycle accurate simulator (multithreaded and
Multicores derivative of Simplescalar) developed at SUNY
Binghamton

 http://www.cs.binghamton.edu/~msim
Evaluated security for AES and Blowfish encryption/decryption
Ran security benchmarks for 3M blocks of randomly generated input

Implemented the attacker as a separate thread and ran it alongside
the crypto processes

Assumed that the attacker is able to synchronize at the block
encryption boundaries (i.e. It fills the cache after each block
encryption and checks the cache after the encryption)

Evaluated performance on a set of SPEC 2006 Benchmarks. Used
Pin-based trace-driven simulator with Pintools.

http://www.cs.binghamton.edu/~msim
http://www.cs.binghamton.edu/~msim

BINGHAMTON
_ UNIVERSITY
@y Seate University af New York

Sets with Critical Exposure

NoMo-0

NoMo-1 128 128 128 128
NoMo-2 10 14 22 22
NoMo-3 0 0 1 1

NoMo-4 0 0 0 0

\ ‘> Impact on IPC Throughput (105 2-threaded BINGHAMTON

b | ERSITY

SPEC 2006 workloads simulated) State Univesey of New York
101
1,00 -+ —
g
E 0.99 ‘//‘ ---------------------------
3 / B NoMo-1
.u 098 @
T ¢ NoMo-2
% 0.97 :NOMO-S
Z NoMo-4
006 #
095"

Benchmark Mixes

o

&y _ R
7 Impact on Fair Throughput (105 2-threadétf ==
SPEC 2006 workloads simulated)

A seraigy of Mew York

wn

(%]

O

=

K

L - NoMo-1
§ - NoMo-2
= ¥ NoMo-3
g -A-NoMo-4
o

pd

Benchmark Mixes

~
ydl

\/ = UNIVERSITY
3w NoMo Design Summary S Ut of o o

Practical and low-overhead hardware-only design
for defeating access-driven cache-based side
channel attacks

Can easily adjust security-performance trade-offs
by manipulating degree of NoMo

Can support unrestricted cache usage in single-
threaded mode

Performance impact is very low in all cases

No OS or ISA support required

Advanced Computing Architectures

BINGHAMTON

UNIVERSITY

NoMo Results Summary S Ut of S o
(for an 8-way L1 cache)

NoMo-4 (static partitioning): complete application isolation with 1.2%
average (5% max) performance and fairness impact on SPEC 2006
benchmarks

NoMo-3: No side channel for AES, and 0.07% critical leakage for
Blowfish. 0.8% average(4% max) performance impact on SPEC 2006
benchmarks

NoMo-2: Leaks 0.6% of critical accesses for AES and 1.6% for Blowfish.
0.5% average (3% max) performance impact on SPEC 2006
benchmarks

NoMo-1: Leaks 15% of critical accesses for AES and 18% for Blowfish.
0.3% average (2% max) performance impact on SPEC 2006
benchmarks

